Sorghum Disease Update

Doug Jardine Extension Plant Pathologist

Diseases of Concern

Sorghum

- Seed rots and seedling blights
- Sooty stripe
- Crazy top downy mildew
- Ergot
- Stalk rot
 - Fusarium
 - Charcoal rot
- Grain molds
- Environmental problems

Plants fail to emerge or die shortly after emergence

- Causes
 - Cold soil
 - Too shallow or too deep planting
 - Crusting
 - Seed rot
 - Seedling blight

Root rots on sorghum are generally not
distinguishable from each other (e.g. Fusarium vs
Pythium)

Sorghum Recommendations

- Do not increase seeding rate to compensate for poor germination conditions
 - Overpopulation can lead to stalk rot problems later
- Delay planting when feasible until soil temperatures are at least 65° F at a 2" depth
- Avoid very low pH soils (<5.2) to reduce Fusarium seedling blight problems
- Supplemental seed treatments have generally not been recommended in Kansas

Severe case of sooty stripe

Sooty Stripe

Effect of sooty stripe on selected sorghum hybrids

Sooty stripe management

- Resistant hybrids
- Crop rotation where reduced-till or no-till are practiced
- No fungicides are currently labeled for sooty stripe

Fungicide use on sorghum

- Products labeled
 - Headline
 - Quadris
 - Quilt
 - Quilt Xcel
 - Tilt (ergot only)

- Diseases labeled
 - Northern corn leaf blight
 - Zonate leaf spot
 - Gray leaf spot (different then on corn)
 - Anthracnose
 - Ergot

Fungicide Performance on Sorghum

Treatment	Yield Bu/a			
Untreated	143			
Headline boot	151			
Headline 50% heading	148			
Headline 100% heading	156			
Headline 50% flower	156			
Schleicher and Jackson, UNL 2009				

Quilt @ flowering Quilt Xcel @ flowering

Headline @ flowering

Quadris @ flowering

Treatment

Untreated

Schleicher and Jackson, UNL 2010

Yield

Bu/a

146

144

150

143

144

Fungicide Performance on Sorghum

Treatment	Early Planted Yield (Bu/a)	Late Planted Yield (Bu/a)	
Untreated	130	138	
Headline @ boot	132	137	
Headline @ 100% emergence		137	
Headline @ 50% flowering	126	137	

Duncan and Jardine, 2008

Effect of fungicides on the reaction of sorghum hybrids to anthracnose in Burleson County, Texas, 2012.

T. Isakeit, Texas A&M

Treatment, rate/A	Anthracnose rating*	Grain mold/ weathering rating**	Test weight (lb/bu)	Yield (lb/A)*
Fungicide				
Non-treated control	2.1	2.6	60.49	7307
Headline 2.09 12 fl oz/A	1.4	2.5	60.63	7094
Quilt Xcel 2.2 14 fl oz/A	2.1	2.6	60.42	7386
Topguard 1.08 14 fl oz/A	2.0	2.8	60.53	7364
LSD (P=0.01)	0.6	NS	NS	NS

*Rating scale of 1-5, where 1=no disease and 5=death of plants. *Rating scale of 1-5, where 1=no disease and 5=deteriorated seed.

Crazy Top Downy Mildew

Crazy top management

 The disease only occurs in low wet areas of fields where soils are saturated for 24-48 hours 1-3 weeks after emergence

 No management is necessary except to perhaps improve drainage where feasible in affected areas

Ergot

 A sticky honeydew exudes from the head 1-2 weeks after flowering

<u>only sterile florets</u>
 <u>can be infected</u>

Honeydew

- A white cottony growth may appear on the leaves or soil below infected heads
- While looking similar to bird droppings, it is actually the sporulating fungus

Ergot management

 Avoid late planting (nearly all cases of ergot in production fields in Kansas have been in fields blooming after September 1st

- Fungicides are only recommended in hybrid seed production fields
 - Tilt, Quadris, Quilt

Stalk Rot

 Significant lodging may or may not occur

 Reduced head size and stalk deterioration are typical symptoms

Fusarium Stalk Rot

- Shredded inner stalk
- Tissue color may be red, purple, or tan
- Cool, wet conditions
 following a period of stress, particularly drought, favor disease development

Charcoal rot

- The same shredded
 appearance as with
 Fusarium occurs but there is
 a black dusty discoloration
 present
- Charcoal rot is most severe when it is wet early in the season, and then very hot and dry during grain fill

Stalk rot management

- Choose hybrids with good root and stalk strength, stay green characteristics and post-freeze lodging resistance
- Reduce seeding rates, especially for charcoal rot
 - Too thick stands promote thinner stalks that are more susceptible to lodging
- Use no-till to increase soil moisture availability
 - Nebraska data showed a 28% reduction in stalk lodging under no-till

Stalk rot management (con't)

- Balance fertility, especially potassium and chloride
 - Avoid excessive nitrogen
 - Use seed treatment insecticides or over the top sprays as necessary to control chinch bugs and aphids
- Manage stress factors such as compaction, plant population, weeds, herbicide stress, etc
 - Avoid brace root damage from 2,4-D or dicamba
- Timely harvest
- Rotate with non-host crops, especially wheat

Grain Mold

- This tends to be a problem in falls with cool, wet weather that delays harvest
- Sorghum molds are not dangerous to livestock
- Moldy grain should not be stored
- Aflatoxin is not an issue in sorghum

Grain mold management

- Plant resistant hybrids
 - Bronze and reds are generally more resistant due to higher tannin levels
- Timely harvest
 - Grain will continue to weather as long as it is in the field
- Keep grain moisture at < 10% and grain temperature at < 50° F if it must be stored

Environmental/Cultural Problems

Sidewall compaction

Rootless sorghum/corn

Poor brace root development

Lodged sorghum due to poor brace root development (environment, not 2,4-D)

Iron Chlorosis

- Iron chlorosis generally occurs in high pH, calcareous soils
- Sorghum is one of the more susceptible crops

Iron Chlorosis

- Symptoms appear on the newest emerging leaves first
- An alternating green and yellow striping is noticeable (veins remain green)

Chlorosis management

Avoid planting sorghum in problem fields

 Use of iron chelates in-furrow is currently being evaluated

• Like soybeans, there are likely hybrid differences in tolerance

Compendium of Sorghum Diseases SECOND EDITION

APS PRESS Edited by Daren S. Mueller, Kiersten A. Wise, Nicholas S. Dufault, Carl A. Bradley, and Martin I. Chilvers

Call toll-free 1.800.328.7560

Visit www.shopapspress.org/compendia Or scan the QR code

THE AMERICAN PHYTOPATHOLOGICAL SOCIETY

facebook.com/kstate.cropdiseases

Twitter: Doug1954@KSU_CropDoc

Doug1954 @KSU_CropDoc Aug 27 We are not without Aspergillus ear mold in 2013. Near Lawrence, KS. pic.twitter.com/ydlosj9Wq3

Expand

